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AIIItract-Some variational fonnulations to the unilaterally supported bent plate problem are
considered with regard to finite element, matrix-displacement methods of solution. The fulfillment
of the boundary inequalities related to the discrete problem is discussed in accordance to different
relaxed fonnulations.

I. INTRODUCTION
Flexure of thin elastic plates with unilaterally constrained edges has received some
attention from various standpoints. The statement of the problem in the context of the
theory of variational inequalities is presented in [I]. Existence and uniqueness of the
solution in a suitable function space have been discussed by Toscano and Maceri for the
plate with elastic (Winkler) support at the boundary and some results of regularity have
been given as well [2]. Results on the extent of the loss of contact for a simply supported
plate in the vicinity of a comer (i.e. rising from the support) have been deduced by means
of an ad hoc technique of superposition in a recent work ofKeer and Mak[3], with regard
to the particular case of a quarter infinite plate submitted to a concentrated load.
Moreover, experimental investigations have been performed in the past[4] and recent[5]
times.

The relevance of the problem with regard to structural practice is apparent, also from
some standard textbooks-see, e.g. ([6], p. 123; [7], Section 5.5.2). From this point of view,
the evaluation of deflections and stresses at meaningful points of the plate is of major
interest. On this purpose, the use of finite element approximations seems fruitful in the
opinion of the authors. On the other hand, numerical methods appear to afford, at the
moment, the nearly unique tools of solution-see, e.g. [8]. However, some questions can
arise in connection with the algebraic model employed, when unilateral constraints are
enforced at the boundary. Namely, if an unknown function (displacement or stress
resultant) is represented by means of a nonlinear interpolate, then a unilateral constraint
enforced at a finite number of prescribed points[9, 10] (boundary mesh nodes) leads to
solve a problem including linear inequalities, but this fact does not imply in principle
fulfillment of the constraint everywhere on the boundary of the plate, which comes to
behave as unilaterally pointwise constrained. Conversely, if respect of the constraint is
pursued everywhere, then the algebraic problem to be solved embodies nonlinear
inequalities. On the other hand such a drawback is peculiar also to the numerical
management of a number of unilaterally constrained problems in structural engineering­
see, e.g. [11].

In this paper, attention is devoted to plate bending in presence of a unilateral, rigid
support at the boundary. Indeed, this case of constraint seems not only paradigmatic, but
also of a major practical interest. Moreover, an extension to different cases (e.g. unilateral
elastic support at the boundary) is possible without substantial differences. Reference is
made to matrix-displacement and mixed finite element methods of solution. The essential,
unilateral constraint on deflections at the boundary (Section 2) is relaxed by embodying
in the current variational formulations of the problem the support reaction as an
independent, sign-constrained function. As a consequence, an unconstrained deflection
field can be referred to a priori, since unilaterality on deflections at the boundary is
enforced by making the starting functional stationary (Section 3). In this way it becomes
possible to fulfill the constraint on the deflections in a weakened form, on the ground of
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a suitable, previously assumed description of the support reaction which, in turn, comes
to play the role of Lagrange multiplier of the compatibility condition on displacements
at the boundary. This aspect is examined with particular regard to the use of linear
interpolates for representing the support reaction (Section 4). Some examples end the paper
(Section 5).

2. BASIC RELAnONS

The plate is considered as a bidimensional solid which occupies the open, bounded,
simply connected domain n in the Euclidean space R3

• The boundary an ofn is assumed
piecewise smooth, i.e. a corner is admitted at the junction of two consecutive, differentiable
arcs. The set of the vertices of an is denoted by Z., B is the generic element of Z•. A
Cartesian, orthogonal reference system (0, Xi' z; i = I, 2) spans R3, domain n belongs to
the z =0 plane, an is referred to the curvilinear abscissa b, Fig. la). A surface load p(xJ
acts onto n, a bending couple &I(b) and a load P(b) (specific values) are distributed along
the boundary, p and P act in the direction z. The plate is unilaterally supported on an
and admitted in equilibrium.

The (symmetric) moment tensor Mij(i,j = 1,2) describes the stress state in the plate.
The specific shear force in the direction Xi is Qi = ajMijt, Fig. I b). Specific bending moment
M, twisting moment, T, shear force Q transmitted through a linear element ds of n are

(l •.d

where ni and Ii are components of the unit normal vector D and tangential vector t to ds,
t being obtained from D by a counterclockwise rotation of n12. If ds is moved to the
boundary an, n becomes the outward unit normal vector and bending moment M and
Kirchhoff shear force

dT
V=Q+­

db
(2)

are the specific generalized stresses transmitted across an. A possible discontinuity of T
at a vertex of the boundary must be viewed as the concentrated, transverse force

Stresses and external loads are related by the equations:

M -&1=0 on an

(3)

(4)

(5)

o~

I)

Fig. 1.

b)

tThe symbol 0/ denotes differentiation with respect to XI' Oy stands for 0tOr Repeated subscripts mean
summation over the range 1,2. The symbol IQ"Zo means summation ranging over all the elements Q of the set
ZQ'



On the analysis of unilaterally supported plates by finite element models

and the inequalities

V- P~O on on

Illl

as the support can react only in the direction z ~ O.
The deflection at a generic point of n U00 is denoted by w. Slope 8 in the direction

of • and curvature tensor Xij are defined as

Besides inequalities (6), the unilateral behaviour of the support requires

W ~O on 00

fM (V - P)w db =0 on on

(8)

where W. is the deflection at the point B. Equations (9) take place because the support can
react only if the plate touches it.

Moment and curvature tensors are related by

(10d

where

Cijlcl =D[(I - v)lJ/lclJjl + VlJ/~IcI]

CUIcI = [(I + v)lJ/klJjl - vlJ/.A,][(l- v)2D]-1

are the (symmetric, positive definite) elastic stiffness and compliance tensors, D is the
flexural rigidity of the plate, 61) is the Kronecker symbol (61) = I if i =j, 61j =0 otherwise).

The following bilinear identities (integration by parts) hold, provided that functions M/j

and ware sufficiently regular:

fn M/Ajwdn= - to/wojM,jdn+ fM( M8 + T::) db (12)

rM/Ajwdn= r wo,jM/jdn+ r (M8 - VW)db - L H.w.. (122)In In JM h~

Equation (I~) follows from (121) by assuming full regularity for MIJ-in particular,
continuity and differentiability for twisting moment T with respect to the abscissa b on
on.

The Reissner's functional related to the problem takes the form:

JiM,» w) = - t(M,p,jw +~C4It,MijMt'+PW)dn+ fM (Ala. - 'Pw)db. (13)

The moment and deflection fields which solve the plate problem with regard to the
operator formulation-equations and inequalities-make functional JII. stationary over the
closed, convex set related to the compatibility constraint (8) on the deflection w. The
converse holds as well.
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3. THE SUPPORT REACTION AS A "SLACK" VARIABLE

Since a reaction plays the role of an external, unknown force which equals inner stresses
at the boundary, inequalities (6) are replaced by the relationships:

R + V - V = 0 R::s;; 0 on an
S.-H.=O S.~O VBeZ.,

where R = R(b) denotes the reaction per unit of length along an and S. the lumped
reaction at a point Be Z•. The analogy between R, S. and a slack variable of an algebraic
inequality is quite apparent. As a consequence, functional JiM/j, w) is replaced by the
functional

JR(M/j, R, {S.}, w, {w.}) = - t(M/Ajw +~ C/jIcIM/jMIcI +pw ) dO

+ r M9 db - r (R + V)w db - L S.w. (16)
Jan Jan ••z.

which differs from JR, eqn (13), only for the part concerning the boundary. Vectors {S.}
and {w.} collect lumped reactions and displacements at the points of Z•.

Functional JR is substantially equivalent to JR, but it allows a slightly different
constrained variational approach to the problem. On this regard, consider Rand {S.}
subjected to inequalities (14J, (15J and deflections w no longer as sign-constrained along
the boundary of the plate. Hence functional JR is to be viewed as weakly concave with
regard to Rand {S.} (besides M/j), for deflection w must fulfill in solution constraint (8).
As a consequence, the following inequality holds for the variation of JR over an

(~JR)iJQ = - f w~R db - L: w~S. + f (M - M)~9 dban .eZ. an
-f (R + f! - V)~w db - L: (S. - H.)~w.::s;; O.an .eZ. (17)

Stationary conditions of JR over an with respect to the (now unconstrained) deflections
are obtained by the vanishing of the last two inner products of eqn (17) and they coincide
with eqns (14.), (15.). By virtue of (I~), (152), variations ~R, ~S. must be taken less than
zero if R, {S.} are equal to zero, hence stationary conditions with respect to R, {S.} are
obtained by enforcing nonnegativity on the first two inner products of (17). This yields

w ::s;; 0, In Rw db =0 on an

(19d

Therefore, constraints (8), (9) at the boundary are fulfilled by making functional JR

stationary under the constraints (I~, (152) on the support reaction.
Suppose now the plate subdivided into contiguous domains by a mesh of lines. All the

points Be Z. are boundary nodes of the mesh, Zo denotes the set of nodes lying on an,
ZD the set of the inner nodes, G and D are typical elements of Zo and ZD respectively.
Two domains can have in common at most the points belonging to their boundaries
between two consecutive vertices. The eth domain is denoted by 0', its boundary by an'.
The sides of one are denoted by 00', the vertices belonging to n, an, Z. are still denoted
by D, G, Band ZD', Zo', Z.' are the sets of such vertices for the domain 0'.

In each domain the properties of regularity required by the relationships of Section 2
for M/j and w are supposed fulfilled, while across the line separating two adjacent domains
a discontinuity is admitted either on the moment field or on the slope 9 in the direction
of the normal to the line. Therefore the boundary an' is split into the parts
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ao{ = 00' n 00 and aOd' = aOM' U aos', a discontinuity. for M, or 8, being admitted on
OOM', or 009'. Identity (122) takes now the form

L[r MiAjw dO - f M8 db] =L[r waijM;j dO + f M8 db, J0' VOs' , J0' ilCIM'

+ f M8 db - f Vw db --: L HD'wD- L HG'wG- L HB'WB] , (20)
(~, 00' DeZD' GeZc/ BeZ"

where H: denotes the jump of T, eqn (3), at a vertex of an... Functional JR, eqn (16),
becomes

JRi..M;j' R, {SB}' W, {WB}) =~ [ - fOO' ( MAjw + ~ C;jldM;jMkl +pw) dO
+f M8 db + f M8 db +f Vw db - f (R + J7)w db] - L S,WB (21)

ilCIs' ilCIj,' ilCI~ ilCIb' 'eZ.

and its first variation over an is

(lJJRi/hn=-rf wlJRdb- r Wr5SB+LU (M-M)lJ8db
, ilCIj,' 'fEZ. ,ilCIj,'

-f (R + J7 - V)lJw db] - L (S, - L H,')lJw, + L L HG'lJwG
ilCI.' 'eZ., GeZG '

(22)

with (lJJ~at1 ~ 0 for JRi/ stationary.
Stationary conditions with respect to reactions are again (19d and (181,2) for each aO{.

Stationary conditions with respect to deflections over an-i.e. equilibrium conditions at
the boundary-are eqns (5), (14) for each aO{ and

L HG' =0 'riG eZG•

(23)

(24)

Equation (23) is the extension of eqn (152) to the case of more subdomains having a
vertex at the same point B. Equation (24) is the statement of continuity for the twisting
moment at a point G of 00. As a consequence, a lumped reaction at a point as G is not
required because of the discretization of functional JR' If the presence of a lumped reaction
is enforced, then a specific constraint of nonpositivity on the displacement WG' to be
fulfilled in solution, is carried into the problem. The converse holds as well. Hence,
enforcing 0 priori nonpositivity on the deflection at a node as G leads to a description of
the reaction (and to an evaluation of the inner stresses at the boundary) in some manner
extraneous to the problem, even if the plate can in principle undergo concentrated loads
along the boundary by means of a discontinuity on the twisting moment. On the other
hand, at a point at G, or B, continuity is not required for shear V along the boundary
and, consequently, for reaction R.

The considerations so far exposed apply directly to the particular variational state­
ments at the ground of finite element methods for plate bending. Taking into account eqn
(12.), a functional a /0 Herrmann[12, 13] is obtained from JRi/:

JH<Mij,R,{SB}'W'{WB})=~[ - fO'GCijkIMljMkI-a;WajMij+PW)dO- f/O' T

x ~~ db - f M8 db +f (M - M)8 db - f (R + J7)w db] - L S,w,_
iJOM' ilCIh' M.' ,&Z.

(25)
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(28)

On the other hand, if Mlj is selected in the class of moment fields in equilibrium with the
load p(xl), a modified complementary energy functional is obtained:

JC<M'j,R,{SB}'W'{WB}'{WG},{wo})=L[~ r Cjjk,MijM/cJdO+ r M8db, Jor Jao"
-f Vw db - f (M - M)8 db +f (R + iJ - V)w db]

ao" aob' aob'

+ L WB(SB-LHB')- L wGLHG'- L woLHo'. (26)
BeZ, , GeZG' OeZD'

Finally, a modified potential energy functional can be derived from JRd by assuming in
advance full compatibility for W onto 0:

J,(R, {SB}. w) = ~ [for GCljk~/jWa/cJW) dO

+ r M8 db -f (R + iJ)w db] - L SBWB' (27)Jan.' aob' BeZ,

Functionals (25)-(27) lead to saddle-point variational statements under the constraint
of nonpositivity for Rand {SB}' Their stationary conditions with respect to the support
reactions are again those exposed for functional JRd' which are indeed not fulfi.11ed a priori
in passing from JRdto IN, Ie or JI''' When such conditions apply to functional Jp, Kirchhoff
shear V(b) and inner forces H must be viewed as functions of w, via the relationships of
Section 2. Functionals (26) and (27) are the analogue of functionals employed to develop
equilibrium[14], hybrid (assumed stress)[15, 16], compatible[l7] finite element models for
plate bending, leading to matrix-displacement methods of solution[I 8].

4. SOME CONSEQUENCES

The outlined scheme allows to provide for an autonomous description of R(b), suitable
for a numerical approach. It is apparent in this outlook that identification among the
support reaction R(b) and Kirchhoff shear at the boundary of the plate can be in principle
achieved only in terms of resultants. On this regard, consider a subdomain a with a side,
aob', belonging to 00. Moreover, represent R(b) onto 00, by means of the m-degree
complete algebraic polynomial

where fl, a are (m + I)-vectors, the jth component of fl is Pj = bj
- I and a is the coefficient

vector. Owing to a continuous field of deflections w'(b) onto iJ~', the virtual work
performed by R'(b) takes the form:

r R'(b )w'(b) db =i fl Taw'(b) db =U,Ta,
Jan.' an.'

where u' is the (m + I)-vector whose ith component is

u/ = r hi-1w'(b) db.
Jan.'

(29)

Therefore, such a modelling of R(b) leads to take into account, sub specie of work, the
deflections at the boundary of the plate as the set of average values (29), where the
monomial hi - I is the weight. It is more convenient, in practice, to interpolate R(b) over
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oQh' by means of the Lagrange polynomial of degree m (19]:

185

(30)

where CI»(b) is the (m + I)-vector of shape functions and pt is the unknown vector of nodal
parameters, which are the values taken by Rt over a set of m + 1 points (knots), fixed in
advance onto OOb'. Expression (28) becomes

r W(h )w"(h) dh = r cJ)T(h )/1"(h )w'(h) dh = w'Tpt,
J~{ J~{

where the jth component of w' is

wI = r Cl>J{b )wt(b) db
J~b'

(28')

(29')

and Cl>J(b) is the jth shape function. In this case, wI is a linear combination of components
of u. Constraint (14J takes the form

(31)

and the integral under the first summation of (22) becomes

r w6R db = r W t 6[$T(b )p'] db = r w'[cDT(b )6p'] db. (32)
J~, JilOb' J~t

As the whole term in the square brackets at the r.h.s. of (32) must be less than zero
if inequality (31) is fulfilled as an equation, stationary for functionals (21), (25) ... (27) with
respect to R implies again wt:E; 0 and vanishing of the inner product (28'), if inequality
(31) is required to be fulfilled punctually. It should be observed that this fact requires, in
principle, to solve a nonconvex optimum problem for R(b) over aO,t, in order to express
the position of the extremum points of Rt in dependence of pt and enforce condition (31)
at such points. In this way the l.h.s. of (31) becomes a nonlinear function of p, moreover
inequality (8) must be applied punctually over oO,t.

If inequality (31) is replaced by the inequality

pt:E; 0,

then eqn (32) shows that stationary with respect to R implies simply

w' = r CI»(b )w t db :E; 0
J~{

(33)

(34)

and both inequalities (33) and (34) arc linear. This approach (see, e.g. [20], in a different
context) leads to weaken condition (18.), but also to relax condition (I~). Namely the first

b
t----. I •
1 2

Lt'--------+-----II
m m+ 1
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one is enforced only in the average sense previously exposed, the second on the set of the
knots only.

As, after all, R(b) is required to weak condition (8), a more coherent, but by no means
less useful representation of R(b) is achievable by adopting a piecewise linear Lagrange
interpolation with m + 1 knots, including the end points of aobl', Indeed, in this case
conditions (31) and (33) become equivalent. Moreover, quite elementary expressions are
obtained for ....~t. Namely, assume for the sake of simplicity cOlt rectilinear, Fig. 2. Then
it follows:

where hj is the abscissa of the jth knot and

w~,. =:,.1.. wt(b) db, iP~,. =~.~ i... Ci-b)Wl'(b) db

are recognizable as the average displacement and stope over the subinterval among two
consecutive knots.

The above considerations are independent of the representation adopted for w(xj ),

which can be taken according to finite element models already developed for plate bending
in the previously exposed variational contexts. On this regard, assume the deflection wE(b)
as represented by a n-degree complete polynomial over COpE, Then wE(b) depends on 12 + I
unknown parameters and wj, eqn (29'), becomes a linear expression of these parameters.
As a consequence, inequality (34) becomes a system ofm + 1inequalities in 12 + 1variables
and the rank of the coefficient matrix of this system is equal to min {m + 1,12 + I}, since
shape functions cD(b) are a basis for aObE. It is just worth noting that the same coefficient
matrix, transpose and sign-changed, affects vector pI' in the equilibrium equations derived
from the fourth integral of (22). The algebraic problem deriving from the whole
discretization is a linear complementarity problem in the set of variables w' and pE{21}.
If the number, m + I, of the knots in the interpolation of RI'(b) is equal to 12 + I, then

14
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4.202
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1234567
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Fig. 3. Functions R(b) "" R(b)(L/P) for Herll7) element, concentrated load P.
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Fig. 4. Central deflection IV >= 14'/(PH2/D), concentrated load P, mesh A.

inequality (34) actually constraints all the parameters of w'(b). A more accurate control
on the deflections on ao.{ could be reached if a greater number of knots is employed
(m > n) to interpolate R(b). Nevertheless, only n + I inequalities can, at most, result really
activet. After all, the description of the behaviour of the plate, even along the boundary,
comes to depend substantially on the interpolation model taken in advance for the
deflection field.

S. AN APPLICATION

A triangular equilateral plate of uniform thickness and elastic constants
E =206010 MPa, v =0.3 is considered. The plate is assumed unilaterally supported along
the boundary and submitted alternatively to a concentrated load P at the center and to
a uniform load q. The HCT finite element developed in Ref. [17] (12 d.o.f compatible

R
1.2

1.0

0.4

0.2

R
1.2

.099

~
2 3 4 5

I 2 3 4 5 6 7 8 9 10

I~. ,....Lll2
.928--­.701r-

Mesh A

I 1.175
. rl.l61
l.r.....1.116

...--1.042
...........942

.804-

I 2

Mesh B

Fig. S. Functions R(b) ... R(bX2 ·q/H) for HCT 12[17] clement, uniform load q.

tIt is quite transparent the analolY between R and a plastic activation rate, w and the distance of the stress
point from the yield locus in a plasticity problem with linearized associate ftow !aws[22I.
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w.1000

'" ~ ~...... ... ...
~ ~ ~- - .

4 5 6 Knots for el.ment side

Fig. 6. Central deflection IV =w/(qH4/D), uniform ioad q, mesh A.

model) is adopted. Regular meshes obtained by subdividing the plate side in ten (mesh A)
and twenty (mesh B) equal subintervals are employed, Fig. 3. Numerical developments
have been performed on the system CDC CYBER 76 of the CINECA (Casalecchio di
Reno, Bologna).

Concentrated load
The upper part of Fig. 3 depicts respectively the cases of R(b) constant, linear,

piecewise linear with a central knot for each element side, mesh A. The lower part of Fig.
3 is the analogue for mesh B. In the (piecewise) linear interpolation model, R(b) is assumed
continuous at the mesh nodes. The deflections at the plate center, for mesh A and 2..;- 6
knots piecewise linear interpolates (constant interval) for R(b), are reported in Fig. 4. The
central deflection evaluated by assuming R(b) constant for each element side is
0.0059480 PAllO, whereas the value of 0.0059328 PAllO is obtained by assuming only
the boundary mesh nodes as unilaterally supported (element sides are free), mesh A. The
deflections WA at the plate center and W. at the corner for mesh B are reported in the two
first columns of Table 1 (t). The values obtained by means of the 13 d.o.f. equilibrium
model (EQT [14]) are also reported. In this case the unilateral constraint has been enforced
only on the average side deflection.

Uniform load
Figure 5 represents R(b) as in the previous loading case, for the meshes A and B. The

central deflection for mesh A and different numbers of knots are reported in Fig. 6, which
is analogous to Fig. 4. For the same mesh, the central deflection evaluated for R(b)
constant for each element boundary side is 0.00102429 qH4/O and the deflection for the
case of only mesh nodes unilaterally supported is 0.00102219 qH4/O. The rightmost part
of Table I collects the results for the deflections WA and W. and the moment M at the plate
center.

Table I. Deflections and moment at the plate center for a central load P and a uniformly distributed
load q

WAX 10 W, X 10- 2 WA X 10 2 w, X 10- 2 M X 10- 1

_2

0 0.59953 0.32063 0.10310 0.00653 0.24202
I 0.59979 0.32077 0.10314 0.00684 0.24208
2 0.59969 0.32436 0.10306 0.00611 0.24194
3 0.59955 0.32155 0.10311 0.00652 0.24202
EQT(14) 0.60356 0.32196 0.10340 0.00724 0.24188

Bilateral
support{6, 0.575 0.10288 0.24074

art. 72)
PH2/D PH2/D qH4/D qH4/D qH2Multiplier

fAs the values for more than 3 knots are substantially coincident with the value obtained for 3 knots for
side, tbey are not reported.
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